Triangular random matrices and biorthogonal ensembles

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random matrix ensembles involving Gaussian Wigner and Wishart matrices, and biorthogonal structure.

We consider four nontrivial ensembles involving Gaussian Wigner and Wishart matrices. These are relevant to problems ranging from multiantenna communication to random supergravity. We derive the matrix probability density, as well as the eigenvalue densities for these ensembles. In all cases the joint eigenvalue density exhibits a biorthogonal structure. A determinantal representation, based on...

متن کامل

Two Random Walks on Upper Triangular Matrices

We study two random walks on a group of upper triangular matrices. In each case, we give upper bound on the mixing time by using a stopping time technique.

متن کامل

Condition Numbers of Random Triangular Matrices

Let L n be a lower triangular matrix of dimension n each of whose nonzero entries is an independent N(0; 1) variable, i.e., a random normal variable of mean 0 and variance 1. It is shown that n , the 2-norm condition number of L n , satisses n p n ! 2 almost surely as n ! 1. This exponential growth of n with n is in striking contrast to the linear growth of the condition numbers of random dense...

متن کامل

Random block matrices generalizing the classical ensembles

In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the roots of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the roots. This relation between the random block matrices and matrix orth...

متن کامل

Stability of block-triangular stationary random matrices

The objective of this note is to prove, under certain technical conditions, that the top-Lyapunov exponent of a strictly stationary random sequence of block-triangular matrices is equal to the maximum of the top-Lyapunov exponents of its diagonal blocks. This study is partially motivated by a basic technical problem in the identification of GARCH processes. A recent extension of the above inher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2018

ISSN: 0167-7152

DOI: 10.1016/j.spl.2017.10.010